skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiang, Shengchang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Escalating carbon dioxide (CO2) emissions have intensified the greenhouse effect, posing a significant long-term threat to environmental sustainability. Direct air capture (DAC) has emerged as a promising approach to achieving a net-zero carbon future, which offers several practical advantages, such as independence from specific CO2 emission sources, economic feasibility, flexible deployment, and minimal risk of CO2 leakage. The design and optimization of DAC sorbents are crucial for accelerating industrial adoption. Metal-organic frameworks (MOFs), with high structural order and tunable pore sizes, present an ideal solution for achieving strong guest-host interactions under trace CO2 conditions. This perspective highlights recent advancements in using MOFs for DAC, examines the molecular-level effects of water vapor on trace CO2 capture, reviews data-driven computational screening methods to develop a molecularly programmable MOF platform for identifying optimal DAC sorbents, and discusses scale-up and cost of MOFs for DAC. 
    more » « less
    Free, publicly-accessible full text available February 19, 2026